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REFINEMENT OF THE PLASTIC-ZONE BOUNDARY IN THE

VICINITY OF A CRACK TIP FOR THE QUASIVISCOUS AND

VISCOUS TYPES OF FRACTURE

UDC 539.375M. E. Kozhevnikova

A refined solution of the elastoplastic problem of an insulated mode I crack in a thin plate of reasonably
large dimensions is obtained. Estimates of the plastic zone in the vicinity of the crack tip are given
for quasiviscous and viscous types of fracture.

Key words: crack, plastic zone, quasibrittle, quasiviscous fracture, viscous fracture.

1. Formulation of the Problem. Let an infinite thin plate with an insulated crack be loaded by remote
tensile constant stresses σ∞ symmetric about the x axis. The crack is modeled by a bilateral cut of length 2l0 [1].
From the viewpoint of applied mechanics, it is reasonable to describe the prefracture zone ahead of the crack tip by
two geometrical parameters: the length ∆ and width h of this zone [2]. In [2, 3], the types of fracture are classified
according to the length of the prefracture zone ∆ to the crack length l0 as follows: brittle fracture (∆ = 0),
quasibrittle fracture ∆/l0 = o(1)], quasiviscous fracture [∆/l0 = O(1) or l0/∆ = O(1)], and viscous fracture
[l0/∆ = o(1)]. We identify the prefracture zone with the plastic zone. This problem has an approximate solution,
which provides reasonable accuracy for the cases of brittle and quasibrittle fracture [1], where the remote stress is
known to be smaller than the yield stress. In this case, by virtue of the inequality σ∞ � σm (σm is the yield stress),
the formulas for the stresses do not contain the regular term, namely, the stress σ∞ [1]. However, for the quasiviscous
and viscous types of fracture, for which ∆ ≈ l0, σ∞ = O(σm) and l0 < ∆, σ∞ ≈ σm (σ∞ < σm), respectively, the
approximate solution gives poor accuracy. Our aim is to refine the solution of the problem formulated above and
estimate the dimension of the plastic zone in the vicinity of the crack tip using this solution.

2. Stresses in a Plate with a Crack. The algorithm for determining the stresses in a thin plate with a
crack consists of two stages. In the first stage, the plate without a crack is loaded by remote tensile stresses σ∞. In
the second stage, the crack is modeled by loading the segment y = 0, |x| 6 l0f by forces equal but opposite to the
forces obtained in the first stage, i.e., by compressive forces −σ∞. The desired solution of the problem is the sum
of the solutions obtained in the two stages. For the first stage, the solution is given by

σxx = σxy = 0, σyy = σ∞.

In the second stage, the following boundary conditions are formulated at the crack line y = 0, |x| 6 l0:

σxx = σxy = 0, σyy = −σ∞.

For the second stage, the stress-tensor components are given by [1]

σxx = Re Z1 − y Im [Z ′
1], σyy = Re Z1 + y Im [Z ′

1], σxy = −y Re [Z ′
1]. (1)
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To study the stress field in the vicinity of the crack tip, we introduce the polar coordinates z − l0 = ρ eiθ, ρ

=
√

(x− l0)2 + y2, and θ = arctan [y/(x − l0)] for x > l0 and θ = arctan [y/(x − l0)] + π for x 6 l0. For small
ρ, we obtain J = KI = σ∞

√
πl0, a constant quantity equal to the stress-intensity factor, which depends on the

normal-stress distribution and crack length. Let us calculate Re Z1, Im Z1, Re [Z ′
1], Im [Z ′

1], Re J , Im J , Re [J ′], and
Im [J ′] for an arbitrary value of ρ:
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Here

ρ1 =
√

x2 + y2; ρ2 =
√

(x + l0)2 + y2; θ1 = arctan [y/x]; θ2 = arctan [y/(x + l0)].

Substitution of (2) into (1) yields the following solution for the second stage:
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Setting y = 0 in formulas (2) and (3), for x > l0 we obtain [4]

σxx = σ∞x/
√

x2 − l20 − σ∞, σyy = σ∞x/
√

x2 − l20, σxy = 0. (4)

We note that the singularity at the crack tip is due to the fact that the analysis is based on the classical
theory of elasticity. In real materials, for example, in metals and alloys, plastic strains occur before the stresses
become extremely high. As a result, the stresses are limited by the finite quantity σm — the yield stress of the
material, and a plastic zone is formed ahead the crack tip. The exact configuration and dimensions of the plastic
zone are difficult to determine. To estimate the plastic-zone boundary for the plane stresses, we proceed as follows.
We write the von Mises yield criterion in the principal axes:

(σ1 − σ2)2 + (σ2 − σ3)2 + (σ3 − σ1)2 = 2σ2
m. (5)

Here

σ1,2 = (σxx + σyy)/2±
√

((σxx − σyy)/2)2 + σ2
xy, σ3 = 0. (6)

The third principal stress is obtained for the plane-stress conditions. Inserting (6) into (5), we obtain the equality

3((σxx − σyy)/2)2 + 3σ2
xy + ((σxx + σyy)/2)2 = σ2

m. (7)

Let σm/σ∞ = p. Substitution of formulas (3) into (7) yields

{(3/4) sin2 θ([Im J ]2 + [Re J ]2 + 4ρ2[Re [J ′]]2 + [Im [J ′]]2)

+ 4ρ[sin θ(Re J Im [J ′]− Im J Re [J ′])− cos θ(Re J Re [J ′] + Im J Im [J ′])]

+ ([Re J ]2 cos2 (θ/2) + [Im J ]2 sin2 (θ/2) + Re J Im J sin θ)}/(ρσ2
∞)

+
√

2π{(Re J cos (θ/2) + Im J sin (θ/2))− (3/2) sin θ[−Re J sin (3θ/2) + Im J cos (3θ/2)

+ 2ρ(Re [J ′] sin (θ/2)− Im [J ′] cos (θ/2)]}/(
√

ρσ∞) + 2π(1− p2) = 0. (8)

If, in formula (3) defining the normal stress σyy, we ignore the regular term (the stress σ∞) and confine ourselves
to the asymptotic behavior of the stresses in the vicinity of the crack tip (ρ � l0), then, instead of formula (8), we
have the following approximate relation [1] for the plane stresses:

ρp(θ) ∼= [1 + cos θ + (3/2) sin2 θ]/(4p2) (9)

(ρp = ρ/l0 is the dimensionless radius vector).
Figure 1 shows the boundaries of the plastic zone defined by formulas (8) and (9) for p = 8 (x1 = x/l0 and y1

= y/l0). The solid curve refers to the approximate equation (9) and the dotted curve to Eq. (8). In this case, the
boundaries of the plastic zones are close enough. For p < 8, however, the results obtained using the refined and
approximate solutions differ considerably. Figures 2–4 show the curves obtained using formula (8). One can see
that for p > 1, the plastic zone does not encompass the crack, which agrees with the Leonov–Panasyuk–Dugdale
model [2, 5, 6]. For y = 0, the longitudinal dimension of the plastic zone ahead of the crack tip can be comparable
to the half-length of the crack for p ∼= 1.1 (see Fig. 3, quasiviscous fracture) and can be equal to five, six or more
half-lengths of the crack for 1 < p < 1.1 (see Fig. 4 for viscous fracture).

Let us estimate the width (h) and length (∆) of the plastic zone for x1 = 1 and y1 = 0, respectively. We
calculate the plastic-zone width h. In this case, we have θ = π/2, θ1 = arctan [y1], θ2 = arctan [y1/2], ρ/l0 = y1,
ρ1/l0 =

√
y2
1 + 1, and ρ2/l0 =

√
y2
1 + 4. Even if relation (8) is simplified, it is difficult to express y1 in terms

of p. Therefore, we construct an empirical formula for the relation p(y1). To this end, we calculate the quantity p

from Eq. (8) by substituting a certain value of y1 in it. Setting an initial value y1 = 0.0001 and an increment step
h1 = 0.001, we obtain 1370 pairs (y1, p). Plotting a curve of p(y1) (Fig. 5) and comparing it with the plot of the
power function from [7, p. 579], we see that the formula p = ayb

1 suits to this case. The similarity of the plots can
be checked using the smoothening method. In this case, the quantities X = ln y1 and Y = ln p are “smoothed”:
Y = ln a + bX. Calculating X and Y for the given values of y1 and p, respectively, we infer that the relation
between X and Y is almost linear (Fig. 6). From this it follows that the formula is chosen properly. To determine
the constants a and b, we construct a linear relation between ln y1 and ln p using the following method. We divide
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the conditional equations Y = ln a + bX for the available pairs of XI and YI into two groups each containing 685
equations in increasing order of the variable XI. Summing up the equations of each group, we obtain the following
two equations for a and b:

471.4 = 685 ln a− 948.11b; 82.65 = 685 ln a + 5.174b.

Hence, ln a = 0.1237, a = 1.132, and b = −0.408. The values of p are calculated by the formula p = 1.132y−0.408
1 .

Expressing y1 in terms of p, we obtain the plastic-zone width:

h = y1 = 1.355p−2.45.

The critical crack-opening displacement is given by

hm = 2l0y(εm − ε0) ≈ 2.71p−2.45l0(εm − ε0), (10)

where εm − ε0 is the maximum specific elongation of the ductile material. For comparison, we give the critical
crack-opening displacement obtained by the approximate relation (9) in [2]: h∗m = 1.25p−2l0(εm− ε0). The equality
hm = h∗m holds for p ≈ 5.6. Thus, the approximate formula (9) can be used only for a limited number of parameters p

close to p ≈ 5.6 (see Table 1).
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TABLE 1
p hm/(l0(εm − ε0)) h∗m/(l0(εm − ε0))

1,006 2.670 1.235
1.2 1.734 0.870
1.5 1.000 0.550
2.0 0.500 0.310
4.0 0.090 0.078
6.0 0.034 0.034
10.0 0.010 0.013
20.0 0.002 0.003

TABLE 2
p 2∆/l0 2∆∗/l0 ∆∗∗/l0

1.006 13.08 0.99 105.740
1.010 10.22 0.98 63.300
1.100 1.78 0.83 6.030
1.200 1.03 0.69 2.860
1.500 0.45 0.44 1.000
3.000 0.09 0.11 0.154
10.000 0.01 0.01 0.013
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Let us now estimate the longitudinal dimension of the plastic zone ∆. Setting y1 = 0, we obtain θ = θ1

= θ2 = 0, ρ/l0 = x1 − 1, ρ1/l0 = x1, and ρ2/l0 = x1 + 1. Relations (4), (7), and (8) can be combined to give

x1 = (
√

4p2 − 3 + 1)/
√

4p2 − 6 + 2
√

4p2 − 3.

Consequently, the estimate of the plastic-zone length obtained by the refined solution has the form

∆ = (x1 − 1)l0 =
(
(
√

4p2 − 3 + 1)/
√

4p2 − 6 + 2
√

4p2 − 3− 1
)
l0. (11)

The estimate for the plastic-zone length obtained by the approximate equation (9) is given by [1]

∆∗ = 0.5p−2l0. (12)

Irwin calculated the plastic-zone length ∆∗ for the mode I crack assuming, as a first approximation, that the
normal stress acting on a segment of length ∆∗ is equal to the yield stress of the material [8]. However, when the
peak stress is “truncated” by introducing the plastic zone, the equilibrium of the forces exerted by these stresses is
disturbed [8], resulting in an underestimated value of ∆∗ compared to the real dimensions of the plastic zone. The
equilibrium can be attained only by shifting the stress field by a length equal to∆∗. This procedure reduces to a
fictitious increase in the crack length by the quantity ∆∗ — the Irwin correction for plasticity. Thus, in the second
approximation, where equilibrium of the loads is taken into account, the dimensions of the plastic zone are twice those
for the first approximation [8]. We note that formula (11) can be obtained by setting σyy =

√
σ2

m − 3σ2
∞/4−σ∞/2

in the first approximation. Since formulas (10)–(12) were obtained for the first approximation [8], the values of hm,
∆, and ∆∗ should be doubled.

The models that take into account cohesive forces are based on the assumption that cohesive forces exerting
resistance to the external loads act on the length ∆∗∗ in the vicinity of the crack tip. The cohesive-force intensity
depends on the model [9]. The Leonov–Panasyuk–Dugdale model [5, 6], in which the cohesive forces are uniform
and equal to the yield stress, is used more frequently than others. The relation

∆∗∗ = l0[sec (π/(2p))− 1] (13)
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defines the plastic-zone length for plane stresses in accordance with this model [1]. We compare the plastic-zone
dimensions given by formulas (11)–(13) for the case of plane stresses. Formulas (11) and (12) define the half-length
of the plastic zone; therefore, one should compare the quantities 2∆/l0, 2∆∗/l0, and ∆∗∗/l0. According to Table 2,
for p > 1.5 (the quasibrittle and brittle types of fracture), the dimensionless quantities 2∆/l0 and 2∆∗/l0. agree
well. Moderate disagreement between 2∆/l0 and 2∆∗/l0 is observed for 1.1 6 p < 1.5 (quasibrittle fracture).
For 1 < p < 1.1 (the quasiviscous and viscous types of fracture), agreement between 2∆/l0 and 2∆∗/l0 is out of
the question. Moreover, for 1 6 p < 3, the plastic-zone length calculated by the Irwin model differs from that
calculated for the Leonov–Panasyuk–Dugdale model. For p > 3, the agreement between the quantities obtained
for these models can be considered as satisfactory, taking into account that the models differ substantially. It is
worth noting that the real dimensions of the plastic zone are much smaller than the dimensions calculated for the
Leonov–Panasyuk–Dugdale model, which is due to the triaxial state of stresses [9].

Thus, using the refined solution of the elastoplastic problem, we estimated the plastic-zone dimensions for
the quasiviscous and viscous types of fracture, which cannot be done using the approximate solution. It was
shown that to calculate the longitudinal dimension of the plastic zone for quasibrittle fracture, it suffices to use the
approximate solution, whereas in calculations of the plastic-zone width, the approximate solution can be employed
only for a limited set of parameters p. Given estimates of the plastic zone (length 2∆ and width h), one can refine
the recommendations on using the sufficient strength criterion for quasiviscous fracture.

This work was supported by the Russian Foundation for Basic Research (Grant No. 01-01-00873) and Pres-
ident of the Russian Federation (Grant No. NSh-319.2003.1).
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